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Abstract

A new Queue data structure is introduced that inherits the positive properties of array-based
Queues while removing their main drawback: a fixed size.

1 Introduction

Queues are important components of many computer programs. Two major groups of Queues exist:
Queues that use linked lists and Queues that use arrays.

Queues based on linked lists are e.g. the LinkedBlockingQueue or ConcurrentLinkedQueue from
the Java built-in package java.util.concurrent. These Queues face some opposition due to the nodes
of the linked lists being scattered in memory (being cache-unfriendly, see e.g. [1]) and - more importantly
- that these Queues usually allocate memory and produce garbage (being detrimental to low-latency
applications, see e.g. [2]).

Queues based on arrays are represented by e.g. the ArrayBlockingQueue from java.util.concurrent

or by the LMAX Disruptor (that is actually more than just a Queue, see [3]). These Queues have, on
the other hand, the disadvantage of a fixed capacity that must be allocated up-front.

There also exists a quest for an array-based Queue with auto-extension capability, also without any of
the mentioned drawbacks. The auto-extension should, of course, be smarter than just “allocate a bigger
array, copy data to it and garbage the old array”.

The materials (source codes) referred to are hosted under:
https:// github.com/MultiArrayQueue/MultiArrayQueue

2 The idea

Imagine a kid playing with a model railway: The kid initially has a railway ring of some size, and she/he
then puts more and more coaches onto it. At once the train is so long that the engine is immediately
behind the last coach. What to do now? What about building an additional ring with twice the size and
putting a diversion from the old ring to the new ring? So that the engine does not hit the last coach “from
behind” but diverts to the new ring! Now the kid can add further coaches to the train as there is now
space. If that space is exhausted again, then yet another new ring of quadruple size and a corresponding
new diversion shall be added. And so on. The train can grow pretty long! If all the rail work is done
correctly, the train can even move, over all three rings.

If the kid now starts taking coaches away, the train becomes shorter and eventually does not need all
three rings anymore. However the rings and diversions, once they are laid, stay. So a shorter train will
now run over a long path consisting of all three rings. But: should the train start growing again, all is
prepared! No need to build new rails (= allocate new memory).

This is the key idea of a new data structure: A Multi-Array Queue.

An interactive Web-based simulator exists to get you more familiar with the idea:
https://MultiArrayQueue.github.io/ Simulator MultiArrayQueue.html

More formally:

• Train moving means enqueueing and dequeueing, so optically the train “moves” (let’s now abandon
the metaphor that the kid drives the train by hand - it makes of course no sense to shift Object
references around in memory).
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Figure 1: Multi-Array Queue after two extensions

• The engine side of the train is the writer position, or semantically the tail of the Queue (where
new coaches are added (enqueued)).

• The last couch side of the train is the reader position, or semantically the head of the Queue
(where the oldest coaches are removed (dequeued)).

• The railway rings are arrays of Objects.

• The diversions are longs (positions) that say: divert immediately before it (and on the return
path go back exactly onto it).

The consecutive additions of exponentially growing arrays of Objects allow a capacity that goes
beyond of what one single Java array can offer. E.g. if the size of the first array of Objects is 31, then
26 subsequent arrays could be added, the last having size 2 080 374 784 (which is still below 231 − 1 (the
theoretical limit of array size in Java)). But the cumulative size of all 27 arrays is 4 160 749 537.

3 Implementation

Referring to the above example:
It makes sense to put the references of the 27 arrays of Objects into a “super-array”: the rings array

(Java type Object[][]).
In case of 27 arrays, there will be 26 diversions. In makes sense to put them into an array as well:

array diversions (Java type long[]). The position of the diversion that leads to rings[1] will be in
diversions[0], and so on.

Please note that while the diversion to rings[1] must be located in rings[0], the diversion to
rings[N] can be located in any “lower” rings[M]. The exact positions of the diversions depend on
where exactly the writer has hit the reader “from behind” (and created the diversions). In other words:
The structure depends on the actual sequence of the enqueues and dequeues during the “extension phase”
of the Queue.

Why is the position of a diversion a Java long (actually also the writer and reader positions are Java
long)? This is because for building of the concurrent version of the Queue, the state must be packed

2



into a type that is atomically updatable, and Java long is that (via class AtomicLong). For the exact
occupation of the available 64 bits see ConcurrentMultiArrayQueue.java, but briefly: 31 bits are used
for the array index, 5 bits for the index in the rings array, 1 bit for the extension-in-progress flag and
the remaining 27 bits are used for the round number to prevent the ABA problem.

3.1 Creation and Uniqueness of diversions

It is important that no two (or more) diversions exist on any given position, because otherwise it couldn’t
be concluded from the position alone “where we are”. Therefore, let’s now discuss the actual process of
how diversions are created:

If the writer hits the reader “from behind” on a place where there is no diversion, then it will create
it there, unless the Queue is already at its maximum capacity.

If on that place already exists a diversion and the writer is entering it (let’s call it the entry side of
a diversion), then instead of hitting the reader it diverts to the beginning of the bigger array. If that
place contains another diversion, then the writer diverts further, eventually up to the last (biggest) array.

These two cases actually explain why the Queue can extend to its maximum size from any array
onwards, even from an array with only one element: A diversion will be created in that one element that
leads to a bigger array. The bigger array will contain two elements of which both can (but one would
suffice) become hosts of diversions to yet bigger arrays, and so on till the maximum capacity.

A problem however occurs if the writer is leaving an array via the diversion that led to there (lets call
this the return path of a diversion). If on exactly that spot sits the reader, then the writer is stuck
until the reader moves forward (because it cannot create a second diversion there and it also cannot move
back). This is of course not acceptable!

To resolve this, the writer must be forward-looking: If it sees that this situation could materialize
in the next writer step, it must create a new diversion now, also at a time when it is able to. Such
diversion creation might of course appear unnecessary in hindsight in case the reader has moved away
from the critical spot shortly thereafter (and resolved the situation on its own), but this cannot be relied
upon.

3.2 The Algorithms

Let’s now put together the pseudocode of the writer:

Start a “prospective move forward” at the current writer position
Move forward by one in the array of Objects
if this prospective move goes “beyond” the end of the array then
if in rings[0] then
Move to rings[0][0]

(do not break here because from rings[0][0] eventually diversion(s) shall be followed forward)
else
(i.e. we are in a “higher” rings[N])
Follow diversion[N-1] back
if the reader is there then

return Queue is full
else
(we are on the return path of a diversion (no second diversion can exist there))
(this means: the prospective move forward is done)
Continue processing at (preparations are done, start the actual work)

end if
end if

end if
if the prospective move reaches (an entry side of) a diversion then
Follow it (to the beginning of respective rings[X])
(another diversion may sit there, so then continue following)

end if
if the prospective move has hit the reader (that is in the previous round) “from behind” then
if Queue extension is possible then

extendQueue = true
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else
return Queue is full

end if
else
if the next writer step could hit the reader on the return path of a diversion (the forward-looking
check) then
if Queue extension is possible then
extendQueue = true

end if
end if

end if
(preparations are done, start the actual work)
if extendQueue then
Allocate a new array of Objects and put its reference into rings

Put Object into the first array element of the new array of Objects
Put into diversions the new diversion = the prospective position
new writer position = first array element of the new array of Objects
return Success

else
new writer position = the prospective position
Enqueue the new Object at that position
return Success

end if

The pseudocode of the reader is analogous and simpler (the reader does not create the diversions).
For full details on both the writer and the reader see the Java source codes and/or the JavaScript code
of the Web-based simulator.

Figure 2: A more complex scenario in the Multi-Array Queue Simulator

It might be easier to read BlockingMultiArrayQueue.java, as it is free of the temporal intricacies
that must handled by the ConcurrentMultiArrayQueue.
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3.3 Cost of reading the diversions

Both the writer and the reader have to search the diversions array to check whether they have reached
an entry side of a diversion. This is an extra cost.

Let’s look again at the example of the unbounded Queue with size 31 of the first array (when the Queue
is fully-extended): No diversions can exist in rings[26] (size 2 080 374 784), so no extra cost there. But
rings[25] (size 1 040 187 392) can (but does not have to) contain diversions[25], so one comparison
there. Then rings[24] (size 520 093 696) can (but does not have to) contain diversions[25] and/or
diversions[24], so two comparisons there. And so on. Summarized in table 1.

Table 1: Number of comparisons per array
array size comparisons
rings[0] 31 26
rings[1] 62 25
rings[2] 124 24
rings[3] 248 23
rings[4] 496 22
rings[5] 992 21
rings[6] 1984 20
rings[7] 3968 19
rings[8] 7936 18
rings[9] 15 872 17
rings[10] 31 744 16
rings[11] 63 488 15
rings[12] 126 976 14
rings[13] 253 952 13
rings[14] 507 904 12
rings[15] 1 015 808 11
rings[16] 2 031 616 10
rings[17] 4 063 232 9
rings[18] 8 126 464 8
rings[19] 16 252 928 7
rings[20] 32 505 856 6
rings[21] 65 011 712 5
rings[22] 130 023 424 4
rings[23] 260 046 848 3
rings[24] 520 093 696 2
rings[25] 1 040 187 392 1
rings[26] 2 080 374 784 0

The weighted average number of comparisons is 1 (mathematically: infinite sum of 1/2+1/4+1/8... =
1). This might appear favourable, but the distribution is skewed: 26 comparisons are necessary in
rings[0].

The mitigation factors however are: The comparisons utilize a tight loop running linearly over the
diversions array. This array changes (i.e. new diversions are added) only when the Queue extends,
and these should be rare occurrences (especially when the array is already big enough). Hence, from
performance and scalability points of view, the diversions array can be seen as static (i.e. causes no
invalidations of its cache line), which is favourable, see also [4].

Due to the worst case being a linear search over only 26 longs, no optimization measures were con-
sidered here, as it is known that a break-even point between a linear search and a binary search, for
example, occurs at a surprisingly high number, much above the 26 (see e.g. [5]).

4 Thread-safe Program Codes

Handling of multi-threaded operations is not strictly part of the Multi-Array Queue as such, but rather
a feature on top of it.

BlockingMultiArrayQueue uses ReentrantLock for serializing of the enqueue and dequeue oper-
ations, so the program codes guarded by the lock are always executed by only one thread. The use of
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ReentrantLock allows for waiting (if the Queue is empty on dequeue or full on enqueue).
ConcurrentMultiArrayQueue is a truly concurrent program code based on atomic Compare-And-

Swap (CAS) instructions. See [6] for an introduction to this area.
The pseudocode of the concurrent writer from the temporal perspective is:

Atomic read of the writer position
if the writer position contains the extension-in-progress flag then
Thread.yield() and start anew

end if
(TLWACCH1, especially concurrent readers can move forward the reader position)
Atomic read of the reader position
(TLWACCH, especially concurrent writers can extend the Queue)
Atomic read of the maximum index of the rings array
On local variables: Prospectively move forward, decide about extendQueue, eventually return if Queue
is full. This step involves reading of the diversions array up to the maximum index obtained in the
previous step.
(TLWACCH, especially concurrent writers can move forward the writer position (possibly by extending
the Queue))
if extendQueue then
CAS(writer position, “our” writer position, “our” writer position + extension-in-progress flag)
if CAS succeeded (i.e. the writer position has not been modified yet by other writers) then

(spot C relevant to lock-freedom (see 4.1))
(other writers are now “locked out”)
(readers can continue their work but once they deplete the Queue, they cannot go past the writer
position)
Extend the Queue: Add to the rings and diversions arrays + atomically increment the maximum
index
(time lag when the new diversion is already visible, but not yet the new writer position)
Atomically set new writer position (without the extension-in-progress flag)
return Success

else
CAS failed (i.e. lost the race against other writers) → Start anew

end if
else
(i.e. no extendQueue)
if the reader has not yet cleared the old Object from our prospective writer position (i.e. the reader
is in spot B) then
Wait with Thread.yield() (but stop waiting and start anew if the writer position has moved
forward meanwhile)

end if
CAS(writer position, “our” writer position, “our” prospective writer position)
if CAS succeeded (i.e. the writer position has not been modified yet by other writers) then

(spot A relevant to lock-freedom (see 4.1))
(the writer position is now ”ours”)
write the Object to the writer position
return Success

else
CAS failed (i.e. lost the race against other writers) → Start anew

end if
end if

Again, the pseudocode of the reader is analogous and simpler.
Please read the comments in ConcurrentMultiArrayQueue.java for detailed treatment of:

• Prevention of reads and writes from getting re-ordered

• Argumentation about correctness of the order of reads

1Time Lag When Anything Concurrent Can Happen
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• Usages of the 27-bit round number (implicit by the AtomicLong CAS + explicit in the program
code)

• Other technical handlings and details not covered here

For prevention of the ABA problem the writer and reader positions contain a 27-bit round number
that is incremented on each passing of rings[0][0]. However there still exists a (miniature) chance for
the ABA problem to occur: If a thread gets preempted for such an excessive time during which the 27-bit
round number would roll over back to its old value.

4.1 Lock-freedom

The ConcurrentMultiArrayQueue does not fulfill the strict requirement for “lock-free” that “in a bounded
number of my steps somebody makes progress” (see [6]) because there exist three spots in the program
code (A and B tiny and C the extension operation which is not so tiny) where preemption of a thread
could block other threads for beyond “bounded number of my steps”. A theoretical termination of a
thread in one of these spots would leave the Queue in a blocked state.

Talking about the “tiny” spots A and B (B is in the reader): They result from the impossibility to
perform two actions atomically, namely moving forward the writer/reader position and writing/clearing
the Object reference to/from that position.

A double-location CAS (see [7]) would help here, but it is not supported by any widespread CPUs.
There exist techniques for pinning of threads to CPU cores, see e.g. [8]. If it can be achieved that

the relevant threads never get preempted, then the “lock-free” property could be approached from that
direction.

Leaving the double-location CAS possibility aside, positions in the arrays of Objects must have the
following four-state diagram:

1. Writer position has moved forward to the position (a short-lived state in spot A of the writer)

2. Object reference was written to the position

3. Reader position has moved forward to the position (a short-lived state in spot B of the reader)

4. Object reference was cleared from the position

5 Performance

Referring to [4] again: If there is write sharing then the system ungracefully degrades, the more threads
we add, the slower it becomes.

The obvious “hot spots” are the ReentrantLock in the BlockingMultiArrayQueue and of course the
writer and reader positions (which are long in the BlockingMultiArrayQueue and AtomicLong in the
ConcurrentMultiArrayQueue).

It is expected that these will be the performance-limiting factors and that other Queues - unless they
are based on different principles - will suffer similarly. Therefore, the performance figures should be
similar (or at least in similar ranges).

The performance was measured on a notebook with Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz,
with 2 cores with 2 physical threads each. The notebook runs Windows 10, also many software threads
are already underway on it. It is clear that such machine is not suitable for rigorous measurements in the
sense of obtaining absolute values, but comparative measurements to the following Java Queues should
be meaningful nevertheless:

• LinkedBlockingQueue from java.util.concurrent

• ConcurrentLinkedQueue from java.util.concurrent

• ArrayBlockingQueue from java.util.concurrent

The number of enqueue/dequeue pairs per second were measured depending on how many threads do
the enqueueing/dequeueing concurrently.

The results do not contrast with the “write shared” results in [4]. No Queue overperforms or un-
derperforms the others by orders of magnitude. All Queues perform best in single-threaded regime, in
multi-threaded regime the overall performance falls by around one half.
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Figure 3: Performance measurements of Java built-in Queues and the new Multi-Array Queues

In the range above 4 concurrent threads the Multi-Array Queues underperform the ArrayBlockingQueue
by roughly 10% but outperform the LinkedBlockingQueue. Given the more complex program logic of
the Multi-Array Queues, their underperformance against the ArrayBlockingQueue appears logical.

6 Conclusion

The new Multi-Array Queue has been introduced, developed and measured.
As of publication date (2024) the idea and the program codes are in their early stages and only for

academic interest, not for production use. Reviews, tests and comments are welcome (via Issues in the
GitHub repository).
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